Secure Edge Computing with Lightweight
Control-Flow Property-based Attestation

Nikos Koutroumpouchos*, Christoforos Ntantogian®, Sofia-Anna Menesidou’, Kaitai Liang™,
Panagiotis Gouvas', Christos Xenakis*, Thanassis Giannetsos*
* Department of Digital Systems, University of Piraeus, Greece
 Cyber Security, Department of Applied Mathematics and Computer Science, Technical University of Denmark
T Ubitech Ltd, Greece
F Center for Cyber Security, University of Surrey, UK
Email: {nikoskoutr@ssl-unipi.gr, dadoyan@unipi.gr, smenesidou@ubitech.eu, k.liang@surrey.ac.uk,
pgouvas @ubitech.eu, xenakis@di.uoa.gr, atgi@dtu.dk}

Abstract—The Internet of Things (IoT) is rapidly evolving,
while introducing several new challenges regarding security,
resilience and operational assurance. In the face of an increasing
attack landscape, it is necessary to cater for the provision of
efficient mechanisms to collectively verify software- and device-
integrity in order to detect run-time modifications. Towards this
direction, remote attestation has been proposed as a promising
defense mechanism. It allows a third party, the verifier, to
ensure the integrity of a remote device, the prover. However, this
family of solutions do not capture the real-time requirements
of industrial IoT applications and suffer from scalability and
efficiency issues. In this paper, we present a lightweight dynamic
control-flow property-based attestation architecture (CFPA) that
can be applied on both resource-constrained edge and cloud
devices and services. It is a first step towards a new line of
security mechanisms that enables the provision of control-flow
attestation of only those specific, critical software components
that are comparatively small, simple and limited in function,
thus, allowing for a much more efficient verication. Our goal is
to enhance run-time software integrity and trustworthiness with
a scalable and decentralized solution eliminating the need for
federated infrastructure trust. Based on our findings, we posit
open issues and challenges, and discuss possible ways to address
them, so that security do not hinder the deployment of intelligent
edge computing systems.

Index Terms—Control-Flow Property-based Attestation;
Software-based Attacks; Trusted Component

I. INTRODUCTION

Six decades since the start of the computer revolution, four
decades since the invention of the micro-processor, and two
decades into the rise of modern Internet, all of the technology
required to transform industries through software has finally
matured and can be widely delivered at a global scale. No
part of the industry is untouched by this transformation; be
it automotive [1], [2], smart factories, smart grids [3] or
healthcare [4]. And with the advent of Internet of Things (IoT),
we have just begun reaping the benefits of this evolution that,
however, also brings a number of new challenges (or rather
makes old unsolved challenges urgent to be tackled with); with
security, resilience and operational assurance being some of
the major concerns at both logical extremes of a network,
namely the edge and the cloud.

978-1-5386-9376-6/19/$31.00 (©2019 IEEE

Indeed, in the era where “service is everything and every-
thing is a service”, there is an emerging trend for intelligent
edge computing and the cloud to operate in tandem so as to
provide flexible design choices that best meet business and
operational goals. While this enables the extension of cloud
analytics to edge devices and the delivery of a number of
specialized software-based services for better managing the
generation, processing and exchange of vast amounts of safety-
critical data, it also turns them into attractive cyber-attack
targets [5]. Therefore, in the face of an increasing attack
landscape (Figure 1), it is imperative to ensure their correct
and safe operation because by their very nature these software-
based components may not always be in trusted custody. This
necessitates the provision of efficient mechanisms to collec-
tively verify software- and device-integrity in order to detect
modifications that try to manipulate control-flow integrity [6].

Intensive efforts in academia, industry and standardization
bodies have converged to the use of remote attestation [7] for
verifying the integrity of a software-based service. Typically, it
is realized as a challenge-response protocol allowing a trusted
verifier to obtain an authentic, and timely report about the
state of a (potentially infected) remote device - a prover. A
key component in building such trusted computing systems
is a highly secure anchor (either software- or hardware-
based) that can serve as root-of-trust towards providing cryp-
tographic functions, measuring and reporting the behaviour
of the running software, and computing platform, and storing
data securely. Prominent examples include Trusted Execution
Environments (TEEs like TrustZone) [8], Trusted Platform
Modules (TPMs) [2] or more lightweight secure components
that require minimal hardware features and assumptions (better
suited to operate in resource-constrained devices) such as
SMART, Intel’s TrustLite [9] and ARM’s TrustZone-M.

In this context, many approaches have been proposed in
the literature for enabling devices and services to attest to
their integrity securely; this is achieved through various paths
that can be categorized in static and dynamic solutions.
The static methodologies [10], [11] include functions that
measure the integrity of the device binary images during
boot up towards verifying specific configuration properties.

These might include low-level concrete properties about the
entity’s configuration such as the type of firmware running,
the version of its configuration file or presence of specific
hardware properties, ports and network interfaces, etc.

However, these types of solutions do not capture the real-
time requirements of the envisioned IIoT applications since
they do not ensure the integrity of the software’s execution
during run-time and, therefore, cannot capture attacks that
target the program’s control flow [12], [13]. These types of
attacks are considered the most devastating since they try
to exploit memory- [14] and data-related [15] vulnerabilities
for altering the execution path of the underlying system
processes; either by injecting new malicious code [14] or by
dynamically generating malicious programs based on already
existing benign code snippets [16]. As a consequence, they can
bypass the security of static attestation techniques since the
measurement of a binary can remain unchanged even though
the software’s behaviour has been altered.

Compounding this issue, more advanced dynamic control-
flow attestation solutions have been proposed that can protect
against run-time exploitation techniques [17], [18], [19], [20],
[21], [22], [23] by steering away from static measurements and
aim to check software behaviour; software that is running as
expected by verifying the integrity of the entire control flow.
While a number of research efforts have proven the security
and trust guarantees provided by such approaches, there are
still a number of challenges (Section II) to be conquered
especially when it comes to the efficiency, scalability and
robustness of these techniques that question whether they can
be applied in the real-world resource-constrained edge devices.

Such limitations mainly stem from the fact that these
types of operational assurance methods try to verify the
integrity, during run-time, of the entire (untrusted) code base
of commodity platforms and operating systems. Considering
that competitive IloT application markets will always pro-
duce innovative and large systems comprising diverse-origin
software-based components, with uncertain security properties,
the best one can hope for is that a sub-set of such loaded
software functions can be efficiently protected (in near real-
time) against sophisticated run-time exploitation attacks [24].

This exact goal sets the challenge ahead: Can we identify
adequate behavioural and execution properties that can cap-
ture the chains-of-trust, needed for the correct execution of a
system, and that reflect the security- and safety-critical code
widgets to be verified from the untrusted code of the commodity
platform or the cloud service provider? This will, in turn,
enable the provision of control-flow attestation of only these
specific, critical software components that are comparatively
small, simple and limited in function, thus, allowing for a
much more efficient verification and safe co-existence.

The answer to this question is not straightforward; it poses
a series of new research challenges. IIoT applications such
as industrial control systems are increasingly looking for
consolidation of several critical and non-critical functions into
a single device to reduce equipment and factory footprint.
This compartmentalization can lead to the identification of

Cyber Attack Methods Targets Effects

Insider Attack, unwitting behavior Human operators : Disinformation, Distraction,
) Confusion
Data and Policy Corruption ':> Operation Layers :'} Disruption of Operators Behaviour
Code Manipulation, malware) Embedded Control Layer || Induces Inaccuracies and Failures
—
Worms, viruses, flooding jmm)| 0S/Network Layer 7| Denial of Service, Exfiltration
Life-cycle implants of backdoors —) HW/Systems Layer Triggered Malfunction,
”| Performance Loss

. X |
Physical destruction, jmm)| Materials, Devices, and 4
eavesdropping Communication Links Loss of Communication

Fig. 1. Potential cyber-attack methods, targets and effects

the behavioural properties to be attested and the modelling of
the critical software components. However, to be trustworthy,
these components must be verified, and to be verified they
must be small and simple which might denote that a number of
basic services should be given up, thus, greatly affecting their
usefulness and viability. This is a double-edged sword that
calls for a more holistic treatment of such attestation services.

Contributions: In this paper, we propose the use of Control-
Flow Property-based Attestation (CFPA) to significantly en-
hance the state-of-the-art in software integrity and trustworthi-
ness. CFPA represents the first step of a new line of research
on control-flow attestation that is lightweight enough to run in
the resource-constrained edge devices. Through enforceable
security policies, we model the behavioural and execution
properties (as a sequence of states) of only those safety-critical
software functions that need to verified, during run-time, thus
reducing the code base to be attested. Such properties mainly
include execution paths to specific memory regions, as a result
of the invocation of the functions of interest. As part of
this novel approach, CFPA allows for the efficient monitoring
of a program’s control-flow through periodically computing
authenticated and small control-flow footprints. Our proposed
solution is scalable and decentralized, removing the need for
federated trust of the infrastructure entities in cloud-based
environments. This is clearly a viable approach for remedying
the limitations of existing attestation techniques, nonetheless,
there is a need to still overcome a number of open issues
towards a holistic end-to-end security approach.

II. TOWARDS DECENTRALIZED ROOTS OF TRUST

Seeking to design successful IIoT applications comprising
millions of autonomous cyber-physical systems, one has to
cater to the security and trust requirements of all involved
actors (i.e., smart connected edge and cloud devices). A key
challenge is to establish and manage trust between entities,
starting from bi-lateral interactions between two single system
components and continuing as such systems get connected to
ever larger entities. But how can we make sound statements on
the software security properties of single systems and transfer
this to statements on the security properties of hierarchical
compositions of systems (“’Systems-of-Systems’)?

This pressing need for establishing federated trust between
services and devices, in a complex SoS, cannot be solely
secured with common centralized solutions like PKIs. Recent
research [17], [18], [19] has demonstrated the need to move
towards decentralized federated safety critical systems that

aim to establish roots-of-trust in intelligent edge devices by
leveraging software- or hardware-based security mechanisms
(e.g., TPMs, TEE:s, etc.). Particularly with respect to safety and
operational assurance, software components must be enabled
to prove statements about their state so that other components
can align their actions appropriately and an overall system
state can be assessed and verified. Towards this direction, as
aforementioned, a number of static and dynamic (control-flow)
attestation techniques have been proposed that are unable,
however, to fulfill the requirements on scalability, perfor-
mance, robustness, and security of autonomous embedded
systems, as described in the following section.

A. Security Requirements & Current State in Remote Single-
Device and Collective Attestation

In a nutshell, remote attestation mechanisms operate on a
network that comprises thousands of low-end collaborating
edge devices that work together to support a safety-critical
decision process based on measurements received from many
deployed actuators (i.e., sensor devices). In this context, the
underlying protocols should not only be able to handle all
the messages originating from these devices but also actuators
need to verify that all sensors from which they receive data are
uncompromised (scalability) while also having the minimum
possible performance impact. Hence, all actuators must be
verifiers and all sensors must be provers. Furthermore, the
employed attestation strategy should enable the network to
operate undisturbed, for long periods of time, and automat-
ically recover from failures (as a result of potential attacks)
without manual intervention. This implies that an attestation
protocol should be robust and sustain its security service in
case of a device disruption especially since these devices
are usually deployed in wide and uncontrolled areas where
physical and/or remote compromise is much easier than typical
computer systems. This, in turn, necessitates for stronger
security guarantees against both software and physical attacks.

Performance: When it comes to checking and attesting the
integrity of a service control-flow, the overhead on both the
device and the network might exceed the functional limits and
become cumbersome to the system. One of the first solutions
that demonstrated the feasibility of control-flow attestation was
C-FLAT [17]. C-FLAT is an attestation scheme that measures
the valid execution paths undertaken by embedded devices.
However, it requires instrumentation of all control-flow in-
structions thereby violating legacy compliance. What is more,
C-FLAT incurs significant performance overhead; thus, it is
suitable only for small size binaries. Subsequent works such
as LO-FAT [18], LiteHAX [19], SCAPI [20], SCARR [21],
hardware-based attestation [22] and CFIMon [23] aim to
reduce this overhead by proposing attestation protocols that
are either optimized (control-flow graph shortened) or utilize
commonly installed hardware components (hardware acceler-
ators) to ease the strain for low-powered devices.

Scalability: Most of these mechanisms support single-device
attestation where a trusted party, the verifier, is able to check
the integrity of a remote device, the prover. However, as

aforementioned, applying such techniques results in a huge
overhead. Towards this direction, collective attestation pro-
tocols like SANA [25], SEDA [26], DARPA [27] have also
been proposed that decongest the network by distributing the
computational and communication burden to all provers, thus,
reducing the traffic introduced by the large number of edge
devices trying to attest to their integrity. This is achieved by
securely aggregating the attestations of multiple devices in
a single cryptographic token through which the verifier will
be able to confirm that each of the involved devices proved
correctly that their execution flow is as expected.

Robustness & Security: Following this direction of improv-
ing scalability and performance, another line of research is
on application partitioning. Proposed approaches [28] try to
dissect each application in coherent sections with each one
having different security requirements. In these works, the goal
is to improve the precision of security measures that mitigate
the reduced attack vector that each partition might have. A
reminiscent of virtual partitioning is the estimation of the
attack surface [29] of a binary. In our context, the application
partitioning and the attack surface can be utilized to monitor
and attest only the most critical -from a security point of
view- paths of the binary (e.g., input data handling, etc)
reducing in this way the size and complexity of the control-
flow graph (CFG). The main drawback of these approaches
is that, although they might improve the overall performance
of the applied security, they lack in providing security for
future attacks (i.e., zero days). This is common among security
measures that just mitigate known families of exploitations,
since they do not continuously check the program for possible
divergences in the control flow.

B. Hardening the IoT Stack: Intertrustability of System Com-
posability

A combination of these concepts is of great interest for the
secure composability of emerging IoT infrastructures which
encompass a broad array of services and applications. The
future-proofing of control-flow attestation together with the
efficiency of application partitioning could lead to a solution
that is both easily applicable and highly secure. This is
perfectly aligned with the current trend of shifting cloud com-
puting technologies and services into edge devices. The recent
advancements on containerization of software that allowed
running containers (docker) on low resource devices , paves
the way for a distributed software architecture in edge devices,
where micro-services can be leveraged to streamline the ser-
vice orchestration process and optimize the use of computing
resources on the edge devices [30]. Micro-services introduce
a way to deal with creating applications as an arrangement of
small autonomous services, a completely different paradigm
from monolithic architecture design. As a result, various parts
of the same application can be independently implemented,
making it conceivable to break down huge applications in
small services with a particular target to achieve. As such,
a system is required to verify that this particular fine grained,
modular, target is indeed achieved.

ITI. CONTROL-FLOW PROPERTY-BASED ATTESTATION

Control-flow property-based attestation proposes another
view towards verifying the integrity of only those critical
software functionalities (e.g., specific micro-services). The
contributions of such a CFPA-based architecture are two-
fold: first of all, we are using advanced tracing mechanisms
for extracting the control-flow graph of a service (i.e., ex-
tended Berkeley Packet Filters (eBPFs)) that provides high
performance with minimal overhead to the execution times
of the device. Second, we redefine the attestation process by
checking only the security-wise critical functions (instead of
the whole application), resulting in a novel, scalable by design,
lightweight, control flow attestation scheme (Section IV).

The insight behind this approach is that we do not need
the attestation of the entire device but only the execution
properties of the security sensitive functionalities that are
running on the device. The identification of which functional-
ities should be monitored is implementation dependent; for
instance in the case of automatic collision avoidance of a
vehicle, the brake Electronic Control Unit (ECU) and the
radar sensors are potential targets that need to be checked for
their proper functionality to be asserted that the system will
work as intended. The aim of this procedure is to check both
behavioural properties and low-level concrete properties about
the entitys configuration and execution, such as the current
firmware version it is running, the version of its configuration
file or presence of certain hardware properties, integrity of
sensor measurements, execution paths to specific memory
regions, ports and network interfaces, etc. Furthermore, some
of these properties might need to be attested individually while
others might require to be approached as a system of systems
that need to be attested by the involved devices as a group.

A. System Model

The system is composed of a network with heterogeneous
interconnected edge devices. Each device is either a verifier
(Vrf) and/or a prover (Prv) with the prover devices executing
security sensitive operations which is the reason why their
system state integrity must be verifiable. Vrf must be able
to check if Prv is in a trusted state by checking its state
against a good state that Vrf has stored. Both the provers
and the verifiers in this system are equipped with a secure
hardware device (TPM, TrustZone, SHE!) that will support
the attestation process by improving its reliability. Should
an entity fail to provide a proper attestation based on a set
of installed security policies, it is immediately considered
untrusted and it is instructed to collect further evidence that
can be used to either prove its trustworthiness or to determine
a route to meeting the failed security policy. The system can be
composed of multiple verifiers and provers, but a typical setup
contains only one verifier with a large number of provers.

B. Safety Requirements and Threat Model

Trust Assumptions: A common requirement in attestation
protocols is that each device in the system is equipped with

ISecure Hardware Extension

@

’@ :@ °
Normal Execution Path
Altered Execution Path 3
ReceiveMsg receive(TOS_MsgPtr msg) { <Sp)
radio_message_t *pRP =
(radio_message_t *) msg data;
// BUFFER_LENGTH=2 (global var)

T L T S
of receive

uint8_t received_bufffBUFFER_LENGTH]; ADDRpeey ADDRprey

// copy payload to a buffer (vulnerability) PRP PRP

strepy(received_buff, pRP data); €«—— received_buff2] el

processData(data); &)

e e A DDRe Stk fame | ADDR saek (53
} Receive Attack

of strepy

Vulnerable Code Before Overflow After Overflow

Fig. 2. Normal and Altered Control Flows

hardware support for remote attestation [17], [18], [19]. This
requirement is needed towards establishing a hardware-based
root-of-trust on which the attestation process will measure
the integrity of the device/service while also communicating
the results of this measurement securely. Furthermore, we
require that the device is resistant to non-invasive attacks (i.e,
side-channel attacks, fault inducing attacks) while the system
should be able to identify offline nodes that have been absent
for a long time and could be victims of such exploitation
attempts (micro-probing, reverse engineering) [31]. Finally,
we require that there are common mechanisms (run-time error
detection, ASLR, stack canaries, bound checking etc.) installed
that will provide memory, type and control-flow safety which
will free the application of unnecessary known security issues
and will let us focus on diminishing greater threats.

Security Requirements: Based on the aforementioned sys-
tem model and trust assumptions, a CFPA-based architecture
is capable of providing a broadened set of security and trust
protection (besides the traditional data confidentiality, integrity
and availability) under weakened assumptions.

R1. Memory Safety. All accesses performed by loaded
processes/services in the underlying memory map of the host
device are “correct” in the sense that they respect the: (i)
logical separation of program and data memory spaces, (ii)
array boundaries of any data structures (thus, not allowing
software-based attacks exploiting possible buffer overflows),
and (iii) don’t access the memory region of another running
process that they should not have access to.

R2. Control-flow Safety. All control transfers are envi-
sioned by the allowed program. This translates to no arbitrary
jumps in the code, no calls to random library routines, etc. This
information is depicted by the allowed control-flow graphs
(CFGs) that are calculated prior to the deployment of a service
and are used as a baseline of the normal (trusted) sequence of
execution states against which run-time control-flow footprints
will be assessed.

R3. Type Safety. All function calls and operations have ar-
guments of correct type, thus, protecting against data-oriented
exploits [15].

Control-flow Properties & Policies: We need to identify
a set of specific properties to be measured by the assisting
hardware for the attestation process to be successful. We define

a set of properties to be attested as the minimal required
set of execution related attributes that will allow the veri-
fier to confidently detect any control-flow deviations. These
properties directly map to specific security-critical subsets of
the application control-flow graph that need to be identified
beforehand. They might include but not limited to: the current
firmware version it is running, the version of its configuration
file or presence of certain hardware properties, integrity of
sensor measurements, execution paths to specific memory
regions, ports and network interfaces, etc. The aim of this
approach is to reduce the size of the attested binaries, thus,
reducing the strain and the computational overhead on the edge
devices, while sustaining a high level of assurance.

Such policies can then be modelled as control-flow policies
that can be deployed to all devices, acting as verifiers, and will
dictate the workflow of the overall CFPA (Section IV). Such
policies are in essence regular expressions denoting sets of
possible control traces; i.e., sets of normal executions CFGs.

DEFINITION 1. Control-flow Correctness: Service S re-
spects a CF policy P if and only if when executed, all control
transfers in S respect the already measured CFGs.

A running example: We consider a running example of
smart connected vehicles which comprise an ecosystem of
thousand ECUs. Each ECU must attest to each other in a
web of interconnected nodes that propagate trust from edge
nodes (usualy sensors) to more central management nodes.
The example follows the functionality of collision avoidance
in which the ECUs contained in the tires gather information
from the tire sensors and report them to the ECU that handles
the breaks. The break ECU, depending on the status of the
tire that is derived from the data sent by the tire ECU, will
take action and apply the breaks accordingly. Let a code
snippet that runs in the tire ECUs contain a buffer overflow
vulnerability (Figure 2). In this example, the tire ECU is the
Prv and the breaks ECU is the Vrf. The tire ECU must attest to
its running integrity before it is trusted by the breaks ECU: if
the properties received from the attestation are consistent with
the S1, S5, S3 control-flow state sequence, then the attestation
process is successful and any data reported from the tire ECU
is trusted. Any other set of properties that might result from
any deviating control-flow like S7, .52, .54 will be rejected and
will flag the tire ECU as compromised and untrusted.

The properties should contain just enough details to fig-
ure any control-flow changes. For instance in Figure 2, we
demonstrate a basic code injection scenario where the control-
flow is altered. The normal execution flow should start from
the function entry (S; / ReceiveMsg.receive()), continue to a
memory sensitive function (S3 / strepy()) and finish with a
data processing function (S3 / processData()). In the scenario
of code injection, the attacker will overflow the stack frame
up to the point that she can overwrite the return address of
the function with the address of Sy (ADDR Atpqcr) Which is
the function that she will redirect the execution flow to. The
system we propose, stores a healthy image of the control-flow
in the form of its properties and afterwards, during the run-

Preventive, Access Control, Information Flow and
Functional Safety Policies Deployment

)
)
)

CF Policy Modelling
and Enforcement

memory regions

Verifier Vrf Prover Prv

@ Request

Q Auth
2 Auth N

Critical
Software
Component

Critical
i Software
Component

Verifier Vrf

Generate Control-
Flow Graph: CFG(S)
Measure CFG Paths: &y
H(CFG(S)) =

Verification of R §4

] [\megnly of Sensor Measurements

h Security and Privacy
1 Risk Assessment
Report
5 CFG Path:
Monitor

«omor lAuth = H(Exec(s)) | !

Measure executed
Reference

Authenticated |
Attestation Report:
Auth

Behavioral and Low-Level Device Properties

E

[Hamware Properties

R

eport(s) on failed
attestation of
properties

!

Fig. 3. CFPA Work Flow

time of the application, it is able to detect any changes made
from code injection attacks like the aforementioned one.

The code injection attacks belong in an attack vector that
directly manipulates control data (return address), thus, chang-
ing the control-flow. In the same category, return oriented
programming (RoP) aims to once again alter control data,
but this time the attacker tailors his execution target by
chaining already installed code in a specific sequence. This
type of attacks, can easily be detected by techniques such as
control-flow integrity (CFI), code-pointer integrity (CPI)[17]
and control-flow attestation which our solution is based on.
However, CFI and CPI are not able to catch non-control-data
attacks which focus on corrupting data variables which are
used to determine the control-flow that will be taken (e.g.
variables in an “if” statement). This kind of attacks are also
detectable by our solution, since again they indirectly manipu-
late the control-flow and lead to a set of properties that will fail
to be attested. Finally, pure data-oriented programming (DOP)
attacks aim to modify only memory load and store operations
and do not affect the execution flow at all, hence they cannot
be caught by control-flow attestation and they are beyond the
scope of this paper.

IV. AN ARCHITECTURAL BLUEPRINT FOR LIGHTWEIGHT
CF PROPERTY-BASED ATTESTATION

A. High-Level Overview

As described in previous sections, CFPA relies on two
core pillars: remote attestation of specific properties and
enforcement of dynamically adaptable policies. With this,
we claim that an SoS can withstand even a prolonged siege by
a pre-determined attacker with known or unknown capabilities
as the system can dynamically adapt to its security and
safety state. This is substantially more flexible than traditional
security mechanisms that often try to maintain and enforce a
pre-defined set of policies using static attestation mechanisms.

Policy-based security management is an administrative ap-
proach for simplifying access control and security manage-
ment of networks, services, etc. by establishing policies. Poli-

cies are sets of operating rules, usually in the form “on event,
if condition, then action”, that reflect the resource owner’s
intention of adequately protecting valuable resources. Policy-
Based Access Control (PBAC) [32] is an access control model
based on policy-based security management, which controls
the access to resources by defining the rules and policies.

The CFPA-based architecture builds on concepts already
existing in the PBAC area and particularizes them for complex
deployments of software components. For instance, access
to the basic services offered by these components will only
be allowed when they can abide to the defined policies;
attest to the integrity of the modelled properties (i.e., specific
case presented in Figure 2). Policy enforcement is managed
through appropriate Policy Decision Points (PDPs) and Policy
Enforcement Points (PEPs) [33].

It is imperative that we are able to express policies that: (i)
when enforced, mitigate the risks of the safety and security
critical systems we wish to compose, (ii) regard properties
that can be attested by the resource constrained embedded
components, (iif) safeguard the privacy of attesting devices by
specifying the general principles for attestation data protection,
and (iv) specify the type of evidence to be collected from a
system, in case it fails to attest some of its properties, so
as to perform a more in-depth investigation of the system’s
behaviour towards detecting if any type of malware is resident
(Section IV-B3). Defined policies must be expressive, deploy-
able, and enforceable and may be dynamically updated if the
attack graph is amended with new types of vulnerabilities.

After the correct definition of such policies, the system can
proceed to periodically (or on-demand) attest the modelled
behavioural and execution properties that mainly include ex-
ecution paths to specific memory regions, as a result of the
invocation of the functions of interest and their control-flow.
All correct execution paths (i.e., CFGs) need to have been
identified and securely deployed to the verifiers so as to act as
the baseline of the normal sequence of states against which the
run-time computed control-flow footprints will be assessed.

Following a similar work flow to the most prominent
control-flow attestation architectures [17], [18], [19], Figure 3
presents the information flow of CFPA between a “prover” and
a “verifier”: In a nutshell, Vr f receives the already defined CF
policies and computes all legitimate control-flow paths (CFGs)
of the software component C' of interest (Steps 1 and 2). To
trigger the run-time CFPA, as dictated by an already defined
security policy, Vr f sends a request to the device which acts
as the Prv (Step 3). The Prv device executes these core
functionalities that the Vrf desires to attest (Step 4) and the
hardware root-of-trust measures the taken control-flow paths
(Step 5). Such a measurement could be achieved through a
simple hash function (Section IV-B2). Finally, the attestation
result is send back to the Vrf for validation (Steps 6 and 7).

Since Pruv attests the control-flow of the software com-
ponent C, Vrf can detect run-time attacks, as discussed in
Section III. Any deviation from the program’s legitimate CFG
results in an unrecognized measurement. In order to support
this periodic attestation process, an important characteristic

Control-Flow Path

: eBPF Runtime Tracer) P .

: s Verification Engine

Target Service e 8!

: 3, O |- Attestation

‘ =

: 84 Process ID o |

: R = |

: Instruction B '

: TadllD 5 \Shared Librarieq E '

Instruction C Parsed TPM e 3

. ‘E ' Hash Engine

. — o

: R 1 . o : :
: J | Trusted Kernel | .
. ! .
O Hardware |

Fig. 4. CFPA Conceptual Architecture

of the depicted work flow is the capability of the CFPA to
observe the run-time execution of the process and collect and
analyze low-level code information. This type of reference
monitoring is based on the integration of advanced tracing
techniques coupled together with the verification components
for confining the execution path if the program is about to
violate the deployed CF policy.

These attributes are depicted in Figure 4 that showcases
the main components of the core attestation toolkit of CFPA:
(a) an eBPF Runtime Tracer and (b) a Control-Flow Path
Verification Engine to trace and measure the run-time CF path.
The eBPF Runtime Tracer (eRT) is based on the innovative use
of extended Berkeley Packet Filters (eBPFs) (Section IV-B1).
In recent years, the eBPF subsystem has been added to the
most Unix-based operating systems and, thus, does not require
any additional kernel module while offering the capability of
compiling and injecting new monitoring code dynamically.
This characteristic makes eBPF a perfect candidate to trace the
execution flow in the target environments. The Control-Flow
Path Verification Engine (CFVE) (Section IV-B2) incorporates
both: (a) a static binary analyzer that generates the programs
Control Flow Graph (CFG) by identifying basic blocks and
their connection, or (b) a dynamic analyzer that produces
valid measurements for a set of inputs by tracing execution of
the target program. One inherent assumption made is that the
Execution Path Verification Engine needs to run in a trusted
environment, otherwise an adversary will be able to manipulate
the output of the control-flow path computation.

B. CFPA Building Blocks

1) Tracing: As aforementioned, such techniques are used to
collect statistical information, performance analysis, dynamic
kernel or application debug information and in general system
audits. In dynamic tracing, this can take place without the need
of recompilation or reboot. In the context of CFPA, a detailed
dynamic tracing of the kernel shared libraries, low-level code,
etc., and an in-depth investigation of the systems behaviour
and execution flow will be performed to detect any cheating
attempts or if any type of (non-previously identified) exploits
are resident to the program and data memory. For instance,
consider a device T'z; that hosts a critical software component
C running a set of services Srvi, Srvs, ..., Srv;. Based on
the pre-defined policies that dictate when the attestation will
commence, the trusted anchor in T'x; will request from the

tracing component to record the control-flow of only those
safety-critical services (properties) of interest Srvy,...STv;.
In the end of the execution, the tracer provides the trusted
anchor with the compiled C' F'G; that represents the runtime
state of T'x;, again of only those properties of interest, that
needs to be attested. The CFVE (Section IV-B2), in turn, stores
an accumulated hash value in CF'G; (in the trusted anchor)
which then uses for comparison against the pre-computed
legitimate CFGs in order to identify any deviation from the
normal execution behaviour.

In CFPA, the goal is to leverage a general tracer that can
be integrated in both edge and virtual (cloud-based) devices.
For that reason, we prompt for investigating the novel use of
eBPFs although their initial scope is mainly for packet moni-
toring. Overall, eBPFs are lightweight enough and can provide
near real-time low-level code inspection, thus, capturing the
requirements of IIoT applications. By incorporating eBPFs, we
can also trace low-level system behaviour such as execution
time, process name of invoked libraries, process id and time of
internal operations. This feature is very important as it enables
the in-depth investigation of the system’s operation in case
of an identified deviation from the normal CFG. The main
idea is that the installed eBPF probes will be programmed
to intercept internal operations towards producing a run-time
control-flow path. eBPFs are used to capture the execution
of specific software components in both physical and virtual
devices so that we can check and attest the integrity of the
execution behaviour based on already defined policies from
embedded devices to cloud services.

2) Attestation Protocol: The internal control-flow attesta-
tion protocol information flow is presented in Figures 3 and 4.
The CFVE measures the run-time control-flow path leveraging
the output of the execution of the eRT tracer. As described pre-
viously, this C'F'G output will include information regarding
the process execution time, the process name, the process id,
the number of bytes read/write, the time of the operation to
complete, the type of traced files (e.g. Directory, Symbolic
Link, Character Device, Socket etc.) and the the parsed data
from kernel. The main idea is that Vrf can check whether
the reported state is trustworthy, i.e., whether only known and
benign software is loaded on Prv. The measures of the CFVE
engine are based on advanced crypto primitives such as run-
time property-based attestation. As already pointed out, Vrf
receives and stores the security CF policies and the control-
flow graph paths of the core functions that need to be attested
(Step 1). Each path is pre-measured separately and corresponds
to a hash value H(CFG(A)) (Step 2) which is generated by
a target collision resistant hash function taking CFG(A) as
input. Due to the collision resistant feature, any two different
inputs, for the hash function, will lead to two distinct outputs.
This indicates that any modification on the path flow will be
easily identified by comparing the hash value of the modified
path with the one of the original path. The CFVE engine,
which may be seen as a log engine, provides a chain of hash
values that may reflect change/update on any input control-
flow graph (presented by Prv). For the same Prv, from a

series of generated hash values, a hash chain can be formulated
to help Vrf maintain a history of the prover’s statuses. This
hash chain is a core aspect of CFPA since it provides additional
levels of security guarantees: for instance, one may trace back
to the prover’s previous and even original status, or search
specific status in the chain to match some given CFG.

Verification Activity: Vrf challenges the prover with a
specific flow path of a functionality (Step 3). Once Vr f sends
an attestation request with a random challenge R, Prv runs
this functionality (Step 4) and the CFVE calculates the hash
measurement of the selected control-flow path which then
responds to V' f as the attestation response (Step 5). Here, the
prover must guarantee that the flow should avoid the possibility
of MITM attacks. To do so, Prv makes use of cryptographic
digital signatures (e.g., Schnorr signatures [34]). We have to
make the inherent assumption that Prv has already had a
public- and private-key pair (pk;, sk;) and the public key,
pk;, is shared with Vrf. The secret key, sk;, is protected
within the trust anchor preventing untrusted parties from any
unauthorized usage. In this case, the prover just needs to sign
the flow with its secret key and further delivers the flow and the
corresponding signature to the verifier such that Vrf is then
able to verify the integrity of the flow using the prover’s public
key. After checking the integrity, Vr f, will check the validity
of the response by proceeding to the hash validation. Since the
verifier has initially stored the (pre-deployed) valid hashes for
each CFG, in order to validate the attestation response, Vr f
checks to see if the transmitted hash measurement matches the
already stored ones; if this is not the case, then this is evidence
that the runtime state of the function of interest, of the Pruv, are
not legitimate which is an indication of a potential compromise
and, thus, more information are collected from the prover to
identify the possible intrusion attempt (Section IV-B3).

3) Trust Evidence Collection: A decision about a system’s
integrity might not be sufficient to understand the system’s
behaviour when the attestation output is negative. In this case,
another stream of assurance functionality is needed which
entails a more in-depth investigation for detecting any cheating
attempts. This is the goal of the trust evidence collection
phase: based on collected evidence regarding the behaviour
of a system, run-time verification mechanisms are applied for
monitoring and verifying both the execution behaviour of a
single system as well as the communication patterns of a set
of attesting systems against a set of specific requirements as
identified in the already deployed policies. This evidence may
include access patterns to different memory regions, libraries,
stack frames, etc. The service will collect this evidence over
some period of time (in the case of a negative attestation
outcome), according to specified policies, and will feed it to
the run-time verification engine for further investigation.

C. Challenges

One of the main challenges in managing device security in
today’s heterogeneous and scalable infrastructures is the lack
of adequate containment and sufficient trust when it comes to
the behaviour of a remote system that generates and processes

mission-critical and/or sensitive data. An inherent property is
the codification of trust among computing entities that poten-
tially are composed of heterogeneous hardware and software
components, are geographically and physically separated, and
are not centrally administered or controlled. By leveraging the
artefacts of traditional security infrastructure (such as digital
signatures, certificates, etc.) coupled with advanced crypto
primitives (such as run-time property based attestation) and
building upon emerging trusted computing technologies and
concepts, CFPA will convey trust evaluations and guarantees
for each network entity. Another challenging task in control-
flow attestation techniques is how to trace deviations from the
valid execution path including code-reuse techniques such as
return-oriented programming and data-oriented programming
that do not divert the programs control-flow or modify its
binaries. As already pointed out, a deeper level of investigation
is needed and eBPFs can be used to monitor the low-level
system behaviour apart from the control- flow on the fly
without re-deployment. These advantages make the integration
of such a tracing technique highly desirable and effective
despite some known limitations such as limited program size
and limited support for loops [35].

V. CFPA ROAD-MAP: OPEN ISSUES TOWARDS EDGE
ASSURANCE SERVICES

Secure Communication Channel. The CFPA high-level
architecture, as depicted in Figure 4, denotes the need for
continuous interactions between untrusted and trusted worlds
of the host device. This communication mode requires us to
build up a secure bridge to deliver messages between the
eBPF runtime tracer and the verification engine. By secure
we mean that (1) the source of a message can be identified
(bidirectional identity authentication) and (2) the integrity and
secrecy of a message can be protected from malicious network
attackers. To achieve the first requirement, i.e. message source
identification, we can leverage digital signatures. The digital
signature scheme enables a message sender to digitally sign
the outgoing message (using the secret key of the sender)
so that the receiver is able to verify (via the public key
of the sender) the “ownership” of the message it receives.
Considering the run-time efficiency, we plan to investigate the
use of Schnorr signatures [34], which are the most efficient and
secure signature schemes in the literature; both for the tracer
and verification engine. A bidirectional identity authentication
is also of high importance for both Prv and Vrf (Figure 3)
so that both of them can confirm that they “speak™ to “the
right entity” in each round of verification.

For securing a message in a communication channel, we
may consider to either set up communications via private
channel, for example, SSL/TSL, or encrypt messages through
public channel (e.g., using RSA encryption [36] to safeguard
device status). While message secrecy may not be needed,
one may just deploy a signature scheme in both the tracer and
verification engine for identity authentication; otherwise, novel
signcryption [37], which provide signature and encryption as-
a-whole service simultaneously, may prove a desirable option.

In all cases, the local key management requirement is still
apparent. This means that we have to make an inherent semi-
trust assumption towards the tracer (located in the untrusted
world) and the engine of being capable of securely storing
their own keys. Recall that the engine is in the trusted kernel,
s.t. we only need to consider the case for the tracer. It may
be challenging to enforce each part of the run-time tracer
to embed a secure key management tool. After a deeper
investigation of the eBPF tracer, one can see that the most
frequent message exchange is located at CFG. Therefore,
one of our next actions will be to investigate how to embed
lightweight key management into the CFG towards achieving
enhanced identity authentication and data security.

Trusted Computing Base (TCB). The careful design and
implementation of TCB components are of paramount impor-
tance to the overall security of the device, including the CFPA
process. The components of the TCB are designed in such a
way so that, when other parts of the system are exploited, they
cannot allow any further type of misbehaviour. Ideally, a TCB
should be as small as possible so that an exhaustive examina-
tion of its code base (by means of manual or computer-assisted
software audit) becomes feasible; especially in the context of
resource-constrained edge devices.

Trusted Codebase Trade-off. Another open problem stems
from the question of how much trust can we actually put on
the trusted kernel. In our design, the requirement of a trusted
kernel is to provide a fully trusted execution environment
for the verification engine. In practice, however, the trusted
kernel might be intruded by network attackers. In this case,
we may need to enhance the trust models contributed by
the kernel via an additional layer of attestation between the
kernel and the engine. Apart from this single-sided trust, the
verification engine should also be designed in a cost-effective
way meaning that we should not prompt for a heavy load of
functionalities to be executed within the isolated environment
of the CFVE since this will compromise the overall perfor-
mance. This sets the challenge ahead: what operations is it
reasonable to place within the “trusted world” of a trusted
component without compromising the overall performance?
The same question can be reversed for the context of the
“untrusted world” provided by a host: what types of services
can be placed in this model without compromising the overall
security and trustworthiness? These are interesting challenges,
where implementation and experimentation will be performed
to evaluate the feasibility of CFPA, and identify a trusted
component capable of performing the required functionalities.

VI. CONCLUSIONS

The current state-of-the-art shows a significant lack of
adequate containment and trust when it comes to the behaviour
of a remote system, while sophisticated software attacks that
target the program’s control flow bypass the security of static
attestation techniques. In this paper, we proposed CFPA as a
first step of a new line of security mechanism: a lightweight
dynamic control-flow attestation that can protect against run-
time penetrations on resource-constrained edge devices. CFPA

relies on both remote attestation of specific properties and the
dynamic deployment and enforcement of security policies. The
main contributions of such a novel architecture are two-fold: a)
the usage of eBPFs as a tracing mechanism for extracting the
CFG and b) the examination and verification of only critical
software components for scalability and performance reasons.
Furthermore, by taking into consideration the salient charac-
teristics of control-flow attestation along with the requirements
of the involved actors, we identified a number of open research
challenges. It is our strong belief that if these challenges are
tackled now while CFPA is still at an early stage, then, this
emerging security mechanism can reach its full potential.

VII. ACKNOWLEDGMENT

This work was supported by the European Commission, un-
der the ASTRID and FutureTPM projects; Grant Agreements
no. 786922 and 779391, respectively.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

S. Gisdakis, M. Lagan, T. Giannetsos, and P. Papadimitratos, “Serosa :
Service oriented security architecture for vehicular communications,” in
2013 IEEE Vehicular Networking Conference (VNC), 2013 IEEE :, ser.
IEEE Vehicular Networking Conference, 2013, pp. 111-118.

J. Whitefield, L. Chen, T. Giannetsos, S. Schneider, and H. Treharne,
“Privacy-enhanced capabilities for vanets using direct anonymous attes-
tation.” in IEEE Vehicular Networking Conference, 2017, pp. 123-130.
T. Dimitriou, T. Giannetsos, and L. Chen, “Rewards: Privacy-preserving
rewarding and incentive schemes for the smart electricity grid and other
loyalty systems,” Computer Communications, vol. 137, pp. 1 — 14, 2019.
T. Giannetsos, T. Dimitriou, and N. R. Prasad, “People-centric sensing
in assistive healthcare: Privacy challenges and directions,” Security and
Communication Networks, vol. 4, no. 11, pp. 1295-1307, 2011.

A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” in Proceedings of the Annual
Design Automation Conference, 2015, pp. 54:1-54:6.

B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in
Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, 2011, pp. 29-40.

F. Brasser, K. Rasmussen, A.-R. Sadeghi, and G. Tsudik, “Remote
attestation for low-end embedded devices: the prover’s perspective,” in
Proceedings of the Design Automation Conference, 2016.

J. Winter, “Trusted computing building blocks for embedded linux-based
arm trustzone platforms,” in Proceedings of the 3rd ACM Workshop on
Scalable Trusted Computing, ser. STC *08, 2008, pp. 21-30.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A
security architecture for tiny embedded devices,” in Proceedings of the
EuroSys Conference, 2014, pp. 10:1-10:14.

Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the integrity of
peripherals’ firmware,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, ser. CCS 11, 2011, pp. 3-16.
A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” Ad Hoc Netw., vol. 9, no. 6, pp.
1059-1067, Aug. 2011.

G. Thanassis, D. Tassos, and P. N. R., “Weaponizing wireless networks:
An attack tool for launching attacks against sensor networks,” in Black
Hat Europe 2010, Barcelona, Spain, April 12-15, 2010.

T. Giannetsos and T. Dimitriou, “Spy-sense: Spyware tool for executing
stealthy exploits against sensor networks,” in Proceedings of the 2Nd
ACM Workshop on Hot Topics on Wireless Network Security and
Privacy, ser. HotWiSec ’13, 2013, pp. 7-12.

T. Giannetsos, T. Dimitriou, I. Krontiris, and N. R. Prasad, “Arbitrary
code injection through self-propagating worms in von neumann archi-
tecture devices,” Comput. J., vol. 53, no. 10, pp. 1576-1593, Dec. 2010.
S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, 2005, pp. 12-12.

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

(33]

[34]

[35]

[36]

[37]

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, pp. 2:1-2:34, Mar. 2012.

T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: Control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 743-754.

G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow
attestation in hardware,” in Proceedings of the 54th Annual Design
Automation Conference, 2017, pp. 24:1-24:6.

G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
Lightweight hardware-assisted attestation of program execution,” in
Proceedings of the International Conference on Computer-Aided Design,
2018, pp. 106:1-106:8.

F. Kohnhéuser, N. Biischer, S. Gabmeyer, and S. Katzenbeisser, “Scapi:
A scalable attestation protocol to detect software and physical attacks,”
in Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2017, pp. 75-86.

F. Toffalini, A. Biondo, E. Losiuouk, J. Zhou, and M. Conti, “Scarr: A
novel scalable runtime remote attestation,” 2018.

T. Zhang, X. Zhuang, S. Pande, and W. Lee, “Anomalous path detection
with hardware support,” in Proceedings of the Int. Conf. on Compilers,
architectures and synthesis for embedded systems, 2005.

Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012), 2012, pp. 1-12.

Z. Zhou, M. Yu, and V. D. Gligor, “Dancing with giants: Wimpy kernels
for on-demand isolated i/0,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy, ser. SP *14, 2014, pp. 308-323.

M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter, “Sana: Secure and scalable aggregate network attestation,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 731-742.

N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “Seda: Scalable embedded device
attestation,” in Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pp. 964-975.

A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni, “Darpa: Device
attestation resilient to physical attacks,” in Proceedings of the 9th ACM
Conference on Security Privacy in Wireless and Mobile Networks, 2016,
pp. 171-182.

D. Geneiatakis, G. Portokalidis, V. P. Kemerlis, and A. D. Keromytis,
“Adaptive defenses for commodity software through virtual application
partitioning,” in Proceedings of the 2012 ACM conference on Computer
and communications security, 2012, pp. 133-144.

C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams,
“Approximating attack surfaces with stack traces,” in Proceedings of
the 37th International Conference on Software Engineering - Volume 2,
2015, pp. 199-208.

M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,
“Orchestration of microservices for iot using docker and edge comput-
ing,” IEEE Communications Magazine, vol. 56, pp. 118-123, 2018.

S. Skorobogatov, Physical Attacks and Tamper Resistance. Springer
New York, 2012, pp. 143-173.

R. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy-
based admission control,” RFC 2753, 2000.

C. Feltus, D. Khadraoui, and J. Aubert, “A security decision-reaction ar-
chitecture for heterogeneous distributed network,” in 2010 International
Conference on Availability, Reliability and Security, 2010, pp. 1-8.

C. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology, 1989, pp. 239-252.

S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in Proceedings of IEEE High Performance Switching and
Routing (HPSRI8), June 2018.

R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120-126, 1978.

Y. Zheng, “Digital signcryption or how to achieve cost(signature &
encryption) << cost(signature) + cost(encryption),” in Advances in
Cryptology, 17th Annual Int. Cryptology, 1997, pp. 165-179.

